Lysosomal Proteolysis and Autophagy Require Presenilin 1 and Are Disrupted by Alzheimer-Related PS1 Mutations
نویسندگان
چکیده
Macroautophagy is a lysosomal degradative pathway essential for neuron survival. Here, we show that macroautophagy requires the Alzheimer's disease (AD)-related protein presenilin-1 (PS1). In PS1 null blastocysts, neurons from mice hypomorphic for PS1 or conditionally depleted of PS1, substrate proteolysis and autophagosome clearance during macroautophagy are prevented as a result of a selective impairment of autolysosome acidification and cathepsin activation. These deficits are caused by failed PS1-dependent targeting of the v-ATPase V0a1 subunit to lysosomes. N-glycosylation of the V0a1 subunit, essential for its efficient ER-to-lysosome delivery, requires the selective binding of PS1 holoprotein to the unglycosylated subunit and the Sec61alpha/oligosaccharyltransferase complex. PS1 mutations causing early-onset AD produce a similar lysosomal/autophagy phenotype in fibroblasts from AD patients. PS1 is therefore essential for v-ATPase targeting to lysosomes, lysosome acidification, and proteolysis during autophagy. Defective lysosomal proteolysis represents a basis for pathogenic protein accumulations and neuronal cell death in AD and suggests previously unidentified therapeutic targets.
منابع مشابه
Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification.
Presenilin 1 (PS1) deletion or Alzheimer's disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (...
متن کاملLysosome and calcium dysregulation in Alzheimer's disease: partners in crime.
Early-onset FAD (familial Alzheimer's disease) is caused by mutations of PS1 (presenilin 1), PS2 (presenilin 2) and APP (amyloid precursor protein). Beyond the effects of PS1 mutations on proteolytic functions of the γ-secretase complex, mutant or deficient PS1 disrupts lysosomal function and Ca2+ homoeostasis, both of which are considered strong pathogenic factors in FAD. Loss of PS1 function ...
متن کاملLysosomal Proteolysis and Autophagy Do Not Require Presenilins
Mutations in genes for presenilins (PS1 and PS2) lead to early-onset familial Alzheimer’s disease (FAD). It was recently shown that PS1 is required for macroautophagy in mouse blastocysts, and lysosomal proteolysis was proposed as a potential therapeutic target in FAD. Zhang et al. have meticulously tested that hypothesis and found it flawed. The previous work asserted that in cells lacking PS1...
متن کاملDifferential Regulation of Amyloid Precursor Protein/Presenilin 1 Interaction during Ab40/42 Production Detected Using Fusion Constructs
Beta amyloid peptides (Aβ) play a key role in the pathogenesis of Alzheimer disease (AD). Presenilins (PS) function as the catalytic subunits of γ-secretase, the enzyme that releases Aβ from ectodomain cleaved amyloid precursor protein (APP) by intramembrane proteolysis. Familial Alzheimer disease (FAD)-linked PSEN mutations alter APP processing in a manner that increases the relative abundance...
متن کاملFamilial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1.
Mutations in presenilins are responsible for approximately 40% of all early-onset familial Alzheimer disease (FAD) cases in which a genetic cause has been identified. In addition, a number of mutations in presenilin-1 (PS1) have been suggested to be associated with the occurrence of frontal temporal dementia (FTD). Presenilins are highly conserved transmembrane proteins that support cleavage of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 141 شماره
صفحات -
تاریخ انتشار 2010